Evolving Temporal Association Rules with Genetic Algorithms
نویسندگان
چکیده
A novel framework for mining temporal association rules by discovering itemsets with a genetic algorithm is introduced. Metaheuristics have been applied to association rule mining, we show the efficacy of extending this to another variant temporal association rule mining. Our framework is an enhancement to existing temporal association rule mining methods as it employs a genetic algorithm to simultaneously search the rule space and temporal space. A methodology for validating the ability of the proposed framework isolates target temporal itemsets in synthetic datasets. The Iterative Rule Learning method successfully discovers these targets in datasets with varying levels of difficulty.
منابع مشابه
Introducing an algorithm for use to hide sensitive association rules through perturb technique
Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...
متن کاملWeb usage mining with evolutionary extraction of temporal fuzzy association rules
In Web usage mining, fuzzy association rules that have a temporal property can provide useful knowledge about when associations occur. However, there is a problem with traditional temporal fuzzy association rule mining algorithms. Some rules occur at the intersection of fuzzy sets’ boundaries where there is less support (lower membership), so the rules are lost. A genetic algorithm (GA)-based s...
متن کاملEvolving Temporal Fuzzy Association Rules from Quantitative Data with a Multi-Objective Evolutionary Algorithm
A novel method for mining association rules that are both quantitative and temporal using a multi-objective evolutionary algorithm is presented. This method successfully identifies numerous temporal association rules that occur more frequently in areas of a dataset with specific quantitative values represented with fuzzy sets. The novelty of this research lies in exploring the composition of qu...
متن کاملTAR: Temporal Association Rules on Evolving Numerical Attributes
Data mining has been an area of increasing interests during recent years. The association rule discovery problem in particular has been widely studied. However, there are still some unresolved problems. For example, research on mining patterns in the evolution of numerical attributes is still lacking. This is both a challenging problem and one with significant practical application in business,...
متن کامل